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Adaptive Control of a Class of MIMO Nonlinear Systems

in the Presence of Additive Input and Output

Disturbances ⋆

Enver Tatlicioglu a, Bin Xian b, Darren M. Dawson c, Timothy C. Burg c

aDepartment of Electrical & Electronics Engineering, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey

bSchool of Electrical Engineering & Automation, Tian Jin University, Tian Jin 300072, P. R. China

cDepartment of Electrical & Computer Engineering, Clemson University, Clemson, SC 29634-0915

Abstract

In this paper, two controllers are developed for a class of MIMO nonlinear systems. First, a robust adaptive controller
is proposed and proven to yield semi-global asymptotic tracking in the presence of additive disturbances and parametric
uncertainty. In addition to guaranteeing an asymptotic output tracking result, it is also proven that the parameter estimate
vector is driven to a constant vector. In the second part of the paper, a learning controller is designed and proven to yield
a semi-global asymptotic tracking result in the presence of additive disturbances when the desired trajectory is periodic. A
continuous nonlinear integral feedback component is utilized in the design of both controllers and Lyapunov-based techniques
are used to guarantee that the tracking error is asymptotically driven to zero. Numerical simulation results are presented for
both controllers.

Key words: Nonlinear systems; Adaptive control; Learning control; Disturbance rejection

1 Introduction

It is the case of a class of MIMO nonlinear systems with parametric uncertainty and bounded disturbances that
is considered here. Review of the basic control problem suggests and disqualifies certain solutions. It is probably
wise at the outset to discard an exact model-based control approach for this problem given that any parameter
estimation error and disturbances are not directly addressed, and hence, the system performance and stability
cannot be predicted a priori. Given the parametric uncertainty in the proposed class of systems to be studied, an
adaptive control solution may be warranted. However, an adaptive controller designed for a disturbance free system
model may not compensate for the disturbances and may even go unstable under certain conditions. Enhancing the
adaptive control approach with a robust component to form a robust adaptive controller can generally guarantee
closed-loop signal boundedness in the presence of the additive disturbances. Unfortunately, while a robust adaptive
controller can potentially guarantee the convergence of the tracking error to a bounded set (i.e., the tracking error
can’t necessarily be driven to zero) the asymptotic tracking result (where the tracking error is driven to zero) that
would be shown for an adaptive controller applied to the disturbance free model will be lost. These trade-offs in
performance and robustness have framed the last ten years of research in robust adaptive control.

⋆ This paper was not presented at any IFAC meeting. A preliminary version of this paper appeared in [19]. Corresponding
author E. Tatlicioglu. Tel. +90-232-7506728. Fax +90-232-7506599.

Email addresses: envertatlicioglu@iyte.edu.tr (Enver Tatlicioglu), xbin@tju.edu.cn (Bin Xian),
darren.dawson@ces.clemson.edu (Darren M. Dawson), tburg@clemson.edu (Timothy C. Burg).
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Review of relevant work highlights some of the different tacks used to approach this problem. An adaptive backstep-
ping controller was shown by Zhang and Ioannou in [23] for a class of single-input/single-output (SISO) linear systems
with both input and output disturbances. The proposed controller demonstrates the use of a projection algorithm to
bound the parameter estimates and guarantees an ultimately bounded tracking error. In an alternate approach, the
work of Polycarpou and Ioannou [18] demonstrated a leakage-based adaptation law to compensate for parametric
uncertainties. The proposed robust adaptive backstepping controller is applicable to a class of higher-order SISO
systems with unknown nonlinearities. The suggested control law guarantees global uniform ultimate boundedness of
the system state (with some restrictions on the bounding functions of the nonlinearities). Robust adaptive control
laws were developed in [4], utilizing the modular design introduced in [11] and a tuning function design, for a class of
systems similar to that studied in [18]. These authors show estimates on the effect of the bounded uncertainties and
external disturbances on the tracking error. In [7], an adaptive backstepping controller for linear systems in the pres-
ence of output and multiplicative disturbances is designed. Ikhouane and Krstic, added a switching σ-modification
to the tuning functions to obtain a tracking error proportional to the size of the perturbations. Marino and Tomei
[15] proposed a robust adaptive tracking controller that achieves boundedness of all signals. The result is based on a
class of SISO nonlinear systems that have additive disturbances but also unknown time-varying bounded parameters.
It is significant that the result shows arbitrary disturbance attenuation. In [16], Pan and Basar proposed a robust
adaptive controller for a similar class of systems in [15], where the tracking error is proven to be L2-bounded. In [5],
Ge and Wang proposed a robust adaptive controller for SISO nonlinear systems with unknown parameters in the
presence of disturbances, which ensure the global uniform boundedness of the tracking error.

Most of the research in adaptive control discussed above has focused on the convergence of the error signals and
boundedness of the closed-loop system signals. As the sophistication in adaptive control techniques has evolved,
additional questions about system performance have arisen. Notably, the final disposition of the parameters estimates
in the closed-loop system has been examined. It is well established that without persistent excitation at the input,
it is not typically possible to show the convergence of the parameter estimates to the corresponding system values
(with an exception being a least-squares algorithm). In fact, for gradient and Lyapunov-type algorithms, convergence
to a constant value, is typically not even guaranteed. Krstic summarized this question well in [10] and also provided
some answers. In [10], it was shown that for the proposed adaptive controller; the parameter estimates will reach
constant values after a sufficient amount of time.

A recent paper by Cai et al. [2] 1 presented a robust adaptive controller for MIMO nonlinear systems with parametric
uncertainty and additive disturbances. It was assumed that the disturbance is twice continuously differentiable and
has bounded time derivatives up to second order, the proposed controller was proven to yield an asymptotic output
tracking result. However, no mention of the convergence of the parameter estimates was made. Thinking out loud for
a moment, it might stand to reason that if the robust part of the controller is compensating for the disturbances and
an asymptotic tracking result is obtained then perhaps something special is happening to the parameter estimates.
Exploring this vague notion with mathematical rigor, we will show that with a minor modification to the control in
[2] and with some additional analysis of the stability result, we are able to formulate a new conclusion about the
parameter estimates. What is shown is that this robust adaptive controller will yield constant parameter estimates
even in the presence of the disturbance. The stability analysis parallels that presented in [2] but with the extended
analysis the convergence of the parameter estimates is demonstrated. In the design of the adaptive controller, the
robust control component in [20] was combined with an adaptive control design to achieve semi-global asymptotic
tracking. One contribution of this paper is to add to the small number of results where parameter convergence has
been shown. In the second part of the paper, a learning controller for the same class of MIMO nonlinear systems
is designed under the assumption that the reference trajectory is periodic (for past research related to the design
of learning controllers, reader is referred to [1], [6], [22] and the references therein). In the design of the learning
controller, the robust control component in [20] was combined a with nonlinear learning control design to compensate
for the unknown system dynamics and a semi-global asymptotic tracking result is obtained in the presence of bounded
additive input and output disturbances. When compared to [20], the two control methods developed in this paper
require less control energy. The adaptive controller includes estimates for the unknown system parameters, and the
learning control design embeds a learning component to compensate for the uncertain system dynamics when the
desired trajectory is periodic. In both control designs, Lyapunov-based techniques are used to guarantee that the
tracking error is asymptotically driven to zero. Numerical simulation results are presented for both controllers to
demonstrate their viability.

1 [2] is the technical report version of [3].
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2 Adaptive Control

2.1 Problem Statement

Following class of MIMO nonlinear systems is considered

x(n) = f +G (u+ d1) + d2 (1)

where x(i) (t) ∈ R
m, i = 0, ..., (n− 1), are the system states, f

(

x, ẋ, ..., x(n−1), θ
)

∈ R
m, G

(

x, ẋ, ..., x(n−1), θ
)

∈
R

m×m are nonlinear functions, θ ∈ R
p is an unknown constant parameter vector, d1 (t) , d2 (t) ∈ R

m are unknown
additive nonlinear disturbances, and u (t) ∈ R

m is the control input. The system model can be rewritten

Mx(n) = h+ u+ d1 +Md2 (2)

where M
(

x, ẋ, ..., x(n−1), θ
)

∈ R
m×m and h (t) ∈ R

m are defined as

M , G−1, (3)

h , Mf. (4)

The system model is assumed to satisfy the following assumptions.

Assumption 1 The nonlinear function G (·) is symmetric, positive definite, and its inverse M (·) satisfies the
inequalities[12]

m ‖ξ‖2 ≤ ξTM (·) ξ ≤ m̄ (·) ‖ξ‖2 ∀ξ ∈ R
m (5)

m̄
(

x, ẋ, ..., x(n−1)
)

∈ R is a positive, globally invertible, nondecreasing function of each variable, m ∈ R is a positive
bounding constant, and ‖·‖ denotes the Euclidean norm. This assumption holds for most electromechanical systems.

Assumption 2 The nonlinear functions, f (·) and G (·), are continuously differentiable up to their second derivatives
(i.e., f (·) , G (·) ∈ C2).

Assumption 3 The nonlinear functions 2 , f (·) and M (·), are affine in θ.

Assumption 4 The additive disturbances, d1 (t) and d2 (t), are assumed to be continuously differentiable and

bounded up to their second derivatives (i.e., di (t) ∈ C2 and di (t) , ḋi (t) , d̈i (t) ∈ L∞, i = 1, 2).

The output tracking error e1 (t) ∈ R
m is defined as

e1 , xr − x (6)

where xr (t) ∈ R
m is the reference trajectory satisfying the following property

xr (t) ∈ Cn , x(i)
r (t) ∈ L∞ , i = 0, 1, ..., (n+ 2) . (7)

The control design objective is to develop an adaptive control law that ensures
∥

∥

∥e
(i)
1 (t)

∥

∥

∥ → 0 as t → ∞, i =

0, ..., (n− 1), and that all signals remain bounded within the closed-loop system. To achieve the control objectives,
the subsequent development is derived based on the assumption that the system states x(i) (t), i = 0, ..., (n− 1) are
measurable.

2 When considering mechatronic systems one main concern in regards to this assumption is the existence of friction. The
reader is referred to [14] and [17] for adaptive controllers that considered a nonlinear parameterizable friction model which
was introduced in [13]. The control design developed in this paper can also compensate for this type of nonlinear friction by
following the similar steps in [17].
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2.2 Development of Robust Adaptive Control Law

The filtered tracking error signals, ei (t) ∈ R
m, i = 2, 3, ..., n are defined as follows

e2 , ė1 + e1 (8a)

e3 , ė2 + e2 + e1 (8b)

...

en , ėn−1 + en−1 + en−2. (8c)

A general expression for ei, i = 2, 3, ..., n in terms of e1 and its time derivatives is given as

ei =

i−1
∑

j=0

ai,je
(j)
1 (9)

where the known constant coefficients ai,j are generated via a Fibonacci number series 3 [20], [21]. To facilitate the
control development, the filtered tracking error signal, denoted by r (t) ∈ R

m, is defined by

r , ėn + Λen (10)

in which Λ ∈ R
m×m is a constant, diagonal, positive definite, gain matrix. By differentiating (10) and premultiplying

by M (·), the following expression can be derived 4

Mṙ=M



x(n+1)
r +

n−2
∑

j=0

anje
(j+2)
1 + Λėn





+Ṁx(n) − ḣ− u̇− ḋ1 −Mḋ2 − Ṁd2 (11)

note that (6), (9), the first time derivative of (2), and the fact that an,(n−1) = 1 were utilized. The expression in
(11) can be arranged as follows

Mṙ = −1

2
Ṁr − en − u̇+N − ḋ1 −Mḋ2 − Ṁd2 (12)

where the auxiliary function N
(

x, ẋ, ..., x(n), t
)

∈ R
m was introduced with the definition

N ,M



x(n+1)
r +

n−2
∑

j=0

anje
(j+2)
1 + Λėn





+Ṁ

(

x(n) +
1

2
r

)

+ en − ḣ. (13)

To facilitate the subsequent analysis, (12) can be rearranged as

Mṙ = −1

2
Ṁr − en − u̇+ Ñ +Nr + ψ (14)

3 By definition, the first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two [9].
4 The open-loop error system in (11) is developed in detail for a second order system in Appendix D.
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where Ñ
(

x, ẋ, ..., x(n), t
)

, Nr (t) , ψ (t) ∈ R
m are defined

Ñ ,
(

N −Mḋ2 − Ṁd2

)

−
(

Nr −Mrḋ2 − Ṁrd2

)

(15)

Nr , N |
x=xr, ẋ=ẋr,..., x(n)=x

(n)
r

(16)

ψ ,−ḋ1 −Mrḋ2 − Ṁrd2 (17)

in which Mr (t) ∈ R
m×m represents

Mr , M |
x=xr, ẋ=ẋr,..., x(n−1)=x

(n−1)
r

. (18)

Remark 1 By utilizing the Mean Value Theorem along with Assumptions 2 and 4, the following upper bound can
be developed 5

∥

∥

∥Ñ (·)
∥

∥

∥ ≤ ρ (‖z‖) ‖z‖ (19)

where z (t) ∈ R
(n+1)m×1 is defined by

z ,
[

eT
1 eT

2 ... eT
n rT

]T

(20)

and ρ (·) ∈ R≥0 is some globally invertible, nondecreasing function.

Remark 2 It is clear from (7), Assumption 4, (17), and the time derivative of (17) that ψ (t), ψ̇ (t) ∈ L∞.

Remark 3 It can be seen from (7), (13), (16), and the time derivative of (16) that Nr (t), Ṅr (t) ∈ L∞.

Remark 4 In view of Assumption 3, Nr (·) defined in (16) can be linearly parameterized in the sense that

Nr = Wrθ (21)

where Wr (t) ∈ R
m×p is the known regressor matrix and is a function of only xr (t) and its time derivatives.

Based on (14) and (21), the control input is designed as

u= (K + Im)

[

en (t) − en (t0) + Λ

∫ t

t0

en (τ ) dτ

]

+

∫ t

t0

Wr (τ ) θ̂ (τ ) dτ + Π (22)

where the auxiliary signal Π (t) ∈ R
m is generated according to the following update law

Π̇ = (C1 + C2) Sgn (en) ,Π(t0) = 0m×1 (23)

where θ̂ (t) ∈ R
p denotes the parameter estimate vector and is generated via

θ̂= Γ

∫ t

t0

WT
r (τ ) Λen (τ) dτ − Γ

∫ t

t0

ẆT
r (τ ) en (τ) dτ

+ΓWT
r (t) en (t) − ΓWT

r (t0) en (t0) . (24)

In (22)-(24), K,C1, C2 ∈ R
m×m and Γ ∈ R

p×p are constant, diagonal, positive definite, gain matrices, Im ∈ R
m×m is

the standard identity matrix, and Sgn(·) ∈ R
m being the vector signum function. It should be noted that θ̂ (t0) = 0p×1

5 The reader is referred to Appendix F for the derivation of the upper bound in (19).
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and u (t0) = 0m×1 where 0p×1 ∈ R
p and 0m×1 ∈ R

m are vectors of zeros. Based on the structure of (22)-(23), the
following are obtained 6

u̇= (K + Im) r + (C1 + C2) Sgn (en) +Wr θ̂ (25)
˙̂
θ= ΓWT

r r. (26)

Finally, after substituting (25) into (14), the following closed-loop error system for r (t) is obtained

Mṙ=−1

2
Ṁr − en − (K + Im) r +Wr θ̃

− (C1 + C2) Sgn (en) + Ñ + ψ (27)

where the parameter estimation error signal θ̃ (t) ∈ R
p is defined as follows

θ̃ , θ − θ̂. (28)

2.3 Stability Analysis

Theorem 1 The control law (22), (23) and the update law (24) ensure the boundedness of all closed-loop system

signals and
∥

∥

∥
e
(i)
1 (t)

∥

∥

∥
→ 0 as t→ ∞, i = 0, ..., n, provided

λmin (Λ) >
1

2
, (29)

C1i > ‖ψi (t)‖L∞

+
1

Λi

∥

∥

∥ψ̇i (t)
∥

∥

∥

L∞

(30)

where the subscript i = 1, ...,m denotes the ith element of the vector or diagonal matrix and the elements of K are
selected sufficiently large relative to the system initial conditions (see Appendix A for proof).

Theorem 2 There exists a constant vector θ̂∞ ∈ R
p such that

θ̂ (t) → θ̂∞ as t→ ∞ (31)

(see Appendix B for proof).

2.4 Numerical Simulation Results

A numerical simulation was performed to demonstrate the performance of the adaptive controller given in (22)-(24).
A first order form of the class of systems considered in this paper 7 with the following modelling functions is utilized
[2]

f =

[

x1x2

x2
2

]

, G =







2 + cosx1

θ1
0

0
3 + sinx2

θ2






,

θ=

[

θ1

θ2

]

=

[

2

1

]

,

d1 =

[

cos (2t) + exp (−0.5t)

sin (3t) + exp (−0.5t)

]

d2 =

[

sin (2t) + exp (−0.5t)

cos (3t) + exp (−0.5t)

]

6 The expressions in (22), (23) and (25) are based on [20] and [21].
7 The system model utilized in this simulation study is presented in detail in Appendix E.
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where x =
[

x1 x2

]T

. The reference trajectory was selected as

xr =

[

xr1

xr2

]

=









sin t

(

1 − exp

(

− t
3

5

))

cos t

(

1 − exp

(

− t
3

2

))









.

The initial conditions of the system were set to x (t0) =
[

2 −1
]T

and θ̂ (t0) =
[

0 0
]T

, while the controller

parameters were chosen as Λ = 4I2, K = 2I2, C1 = 2I2, C2 = 2I2, and Γ = 200I2. The controller parameters above
were selected via a trial-error method until a good tracking performance was obtained and then the lower control
gain value was preferred. The tracking error e1 (t) is presented in Figure 1 where it is clear that the tracking objective

is satisfied. In Figures 2 and 3, the parameter estimate θ̂ (t) and the control input u (t) are presented, respectively.
From Figure 2, it is clear that the parameter estimate vector is driven to a constant vector.

To demonstrate the effect of the adaptive term
∫ t

t0
Wr (τ) θ̂ (τ) dτ in the adaptive controller in (22), during the

simulation run following performance measures were computed

Me (t) ,

∫ t

t0

‖e1 (τ)‖2
dτ (32)

Mu (t) ,

∫ t

t0

‖u (τ )‖2
dτ (33)

where Me (t) is a measure of the magnitude of the tracking error, and Mu (t) is a measure of the energy expended
by the controller over a period of the operation of the system. For both runs, it was observed that the tracking error
converged to zero within 4 seconds. From Table 1, it is clear that after adding the adaptive term, the controller
required less energy while achieving improved tracking performance.

Table 1
Comparison of Energy Measures for Adaptive Control

u (t) without u (t) with
∫

t

t0
Wr (τ) θ̂ (τ ) dτ

∫

t

t0
Wr (τ ) θ̂ (τ) dτ

Me 1.5559 1.4611

Mu 49.1676 47.8269

0 1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

e
11

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

Time [sec]

e
12

Fig. 1. (Adaptive Controller) Tracking Error e1 (t)
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Fig. 2. (Adaptive Controller) Parameter Estimate θ̂ (t) (top plot is θ̂1 (t) and the bottom one is θ̂2 (t))

0 1 2 3 4 5 6 7 8 9 10

−8

−6

−4

−2

0

2

u
1

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

Time [sec]

u
2

Fig. 3. (Adaptive Controller) Control Input u (t)

3 Learning Control

3.1 Problem Statement

The system model in (1) is considered. The nonlinear functions f(x, ẋ, ..., x(n−1)) ∈ R
m and G(x, ẋ, ..., x(n−1)) ∈

R
m×m are uncertain where this dynamic uncertainty is assumed to be non-parameterizable. The system model is

assumed to satisfy Assumptions 1, 2, and 4.

The output tracking error e1 (t) is defined in (6) and in this case the reference trajectory is periodic in the sense that

x(i)
r (t+ T ) = x(i)

r (t) , x(i)
r (t) ∈ L∞, i = 0, ..., (n+ 2) (34)

where T ∈ R
+ is the period of the reference trajectory.

The control design objective is to develop a nonlinear control law that ensures ‖e1 (t)‖ → 0 as t → ∞. To achieve
the control objective, the subsequent development is derived based on the assumption that the system states x(i) (t),
i = 0, ..., (n− 1) are measurable.
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3.2 Development of Learning Control Law

The open-loop error system development for the learning control law is exactly the same as the open-loop error
system development for the adaptive control law. The control design is assumed to continue after Remark 1.

Remark 5 It can be deduced from (34), Assumption 4, (17), and the time derivative of (17) that ψ (t), ψ̇ (t) ∈ L∞.

Remark 6 It can be seen from (13),(16), (34), and the time derivative of (16) that Nr (t) , Ṅr (t) ∈ L∞.

Remark 7 After utilizing (34), it is clear that Nr (t) satisfies the following equation

Nr (t+ T ) = Nr (t) . (35)

Based on (14), the control input is designed as

u= (K + Im) en (t) − (K + Im) en (t0) + Ŵr (t)

+

∫ t

t0

(K + Im) Λen (τ ) dτ + Π (36)

where the auxiliary signal Π (t) ∈ R
m is generated according to the following update law

Π̇ = C1Sgn (en) ,Π(t0) = 0m×1 (37)

and Ŵr (t) ∈ R
m is defined as follows

Ŵr (t) = Ŵr (t− T ) + kLΛ

∫ t

t0

en (τ ) dτ

+kLen (t) − kLen (t0) . (38)

In (36)-(38), K,C1,Λ ∈ R
m×m are constant, diagonal, positive definite, gain matrices and kL ∈ R is a positive gain.

It should be noted that since Ŵr (t0) = 0m×1 it follows that u (t0) = 0m×1. The auxiliary function N̂r (t) ∈ R
m is

defined as

N̂r ,
˙̂
Wr. (39)

By utilizing (39) along with (38), the following can be obtained

N̂r (t) = N̂r (t− T ) + kLr (t) . (40)

Taking the time derivative of (36) and substituting from (37) and (39) generates 8

u̇ = (K + Im) r + C1Sgn (en) + N̂r (t) . (41)

Finally, after substituting (41) into (14), the closed-loop error system for r (t) is obtained as follows

Mṙ=−1

2
Ṁr − en − (K + Im) r (42)

−C1Sgn (en) + Ñ + Ñr + ψ

where Ñr (t) ∈ R
m is defined as

Ñr , Nr − N̂r. (43)

By utilizing (35) and (40), Ñr (t) can be rewritten as

Ñr (t) = Ñr (t− T ) − kLr. (44)

8 The expressions in (36), (37) and (41) are based on [20] and [21].
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3.3 Stability Analysis

Theorem 3 The control law (36) and (38) ensures that ‖e1 (t)‖ → 0 as t → ∞, provided that (29) and (30) are
satisfied and the elements of K are selected sufficiently large relative to the system initial conditions (see Appendix
C for proof).

3.4 Numerical Simulation Results

A numerical simulation was performed to demonstrate the performance of the learning controller given in (36)-(38).
The first order system model in Section 2.4 is utilized with the following reference trajectory

xr =

[

xr1

xr2

]

=

[

sin (0.2πt)

cos (0.2πt)

]

. (45)

The initial conditions of the system were set to x (t0) =
[

1 −1
]T

, while the controller parameters were chosen as

Λ = 20I2, K = I2, C1 = 4I2, and kL = 200. The controller parameters above were selected via a trial-error method
until a good tracking performance was obtained and then the lower control gain value was preferred. The tracking
error e1(t) is presented in Figure 4. From Figure 4, it is clear that the tracking objective is satisfied. In Figure 5, the
control input u (t) is presented.

To demonstrate the effect of the learning term Ŵr (t) in the learning controller in (36), during the simulation run
the performance measures in (32) and (33) were computed. For both runs, it was observed that the tracking error
converged to zero within 5 seconds. From Table 2, it is clear that after adding the learning term, the controller
required less energy while achieving improved tracking performance (i.e., faster convergence).

Table 2
Comparison of Energy Measures for Learning Control

u (t) without Ŵr (t) u (t) with Ŵr (t)

Me 0.83 0.13

Mu 35.14 41.97
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Fig. 4. (Learning Controller) Tracking Error e1(t)

4 Conclusion

Two controllers were developed for a class of MIMO nonlinear systems in the presence of additive disturbances. The
robust adaptive controller was proven to yield a semi-global asymptotic tracking result in the presence of parametric
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Fig. 5. (Learning Controller) Control Input u(t)

uncertainty along with additive disturbances. The adaptive controller and the adaptation law were designed such
that, the parameter estimate vector is proven to go to a constant vector. In the second part of the paper, the
learning controller was proven to yield a semi-global asymptotic result in the presence of additive disturbances and
when the desired trajectory is periodic. In the development of both controllers, the bounded additive disturbances
were assumed to be twice continuously differentiable and have bounded time derivatives up to second order. Since
no assumptions were made regarding the periodicity of the disturbances, it is clear that the suggested controllers
compensate for both repeating and nonrepeating disturbances. For each controller, Lyapunov-based techniques were
used to prove the tracking result. Numerical simulation results were presented for both controllers where nonrepeating
disturbances were utilized.
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A Proof of Theorem 1

Lemma 1 Let the auxiliary functions L1 (t), L2 (t) ∈ R be defined as follows

L1 , rT (ψ − C1Sgn (en)) , L2 , −ėT
nC2Sgn (en) . (A.1)

If C1 is selected to satisfy the sufficient condition (30), then

∫ t

t0
L1 (τ ) dτ ≤ ζb1 ,

∫ t

t0
L2 (τ ) dτ ≤ ζb2 (A.2)

where ζb1, ζb2 ∈ R are positive constants.

PROOF. After substituting (10) into (A.1) and then integrating L1 (t) in time, results in the following expression

∫ t

t0

L1 (τ) dτ =

∫ t

t0

eT
n (τ ) ΛT [ψ (τ ) (A.3)

−C1Sgn (en (τ ))]dτ

+

∫ t

t0

deT
n (τ )

dτ
ψ (τ ) dτ

−
∫ t

t0

deT
n (τ )

dτ
C1Sgn (en (τ )) dτ.

12



After integrating the second integral on the right-hand side of (A.3) by parts, the following expression is obtained

∫ t

t0

L1 (τ) dτ =

∫ t

t0

eT
n (τ ) ΛT [ψ (τ )

−C1Sgn (en (τ ))]dτ + eT
n (τ )ψ (τ )

∣

∣

t

t0

−
∫ t

t0

eT
n (τ )

dψ (τ )

dτ
dτ

−
m
∑

i=1

C1i |eni (τ )||tt0

=

∫ t

t0

eT
n (τ ) ΛT [ψ (τ )

−Λ−1 dψ (τ )

dτ
− C1Sgn (en (τ))

]

dτ

+eT
n (t)ψ (t) − eT

n (t0)ψ (t0)

−
m
∑

i=1

C1i (|eni (t)| − |eni (t0)|) . (A.4)

The right-hand side of (A.4) can be upper-bounded as follows

∫ t

t0

L1 (τ) dτ ≤
∫ t

t0

m
∑

i=1

|eni (τ)|Λi [|ψi (τ)| (A.5)

+
1

Λi

∣

∣

∣

∣

dψi (τ)

dτ

∣

∣

∣

∣

− C1i

]

dτ

+
m
∑

i=1

|eni (t)| (|ψi (t)| − C1i) + ζb1.

If C1 is chosen according to satisfy (30), then the first inequality in (A.2) can be proven from (A.5). The second
inequality in (A.2) can be obtained by integrating L2(t) defined in (A.1) as follows

∫ t

t0

L2 (τ) dτ =−
∫ t

t0

ėT
n (τ )C2Sgn (en (τ )) dτ (A.6)

= ζb2 −
m
∑

i=1

C2i |eni (t)| ≤ ζb2.

Let the auxiliary functions P1 (t), P2 (t) ∈ R be defined as follows

P1 , ζb1 −
∫ t

t0

L1 (τ ) dτ (A.7)

P2 , ζb2 −
∫ t

t0

L2 (τ ) dτ . (A.8)

The proof of Lemma 1 ensures that P1 (t) and P2 (t) are non-negative. The non-negative function V (s (t) , t) ∈ R is
defined as follows

V ,
1

2

n
∑

i=1

eT
i ei +

1

2
rTMr + P1 + P2 +

1

2
θ̃

T
Γ−1θ̃ (A.9)
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where s (t) ∈ R
[(n+1)m+2+p]×1 is defined as

s =
[

zT
√
P1

√
P2 θ̃

T
]T

. (A.10)

By utilizing (5), (A.9) can be bounded 9 as follows

W1 (s) ≤ V (s, t) ≤W2 (s) (A.11)

where W1 (s), W2 (s) ∈ R are defined as

W1 (s) , λ1 ‖s‖2
, W2 (s) , λ2 (‖s‖) ‖s‖2 (A.12)

and λ1, λ2 (·) ∈ R are defined as

λ1 =
1

2
min

{

1,m, λmin

(

Γ−1
)}

,

λ2 = max

{

1,
1

2
m̄ (‖s‖) , 1

2
λmax

(

Γ−1
)

}

. (A.13)

The time derivative of (A.9) can be obtained as follows

V̇ =

n
∑

i=1

eT
i ėi + rTMṙ +

1

2
rT Ṁr + Ṗ1 + Ṗ2 + θ̃

T
Γ−1 ˙̃

θ. (A.14)

The first term in the above expression can be written as follows

n
∑

i=1

eT
i ėi = eT

1 (e2 − e1) + eT
2 (e3 − e2 − e1)

+eT
3 (e4 − e3 − e2) + ...

+eT
n−1 (en − en−1 − en−2) + eT

n (r − Λen)

= −
n−1
∑

i=1

eT
i ei + eT

n−1en + eT
nr − eT

nΛen (A.15)

where (8a)-(8c), (10) where utilized. Substituting (26), (27), (A.1), and (A.15) into (A.14) results in the following
expression

V̇ =−
n−1
∑

i=1

eT
i ei + eT

n−1en + eT
nr − eT

nΛen

+rT

(

− 1
2Ṁr − en − (K + Im) r

+Wr θ̃ − (C1 + C2) Sgn (en) + Ñ + ψ

)

+
1

2
rT Ṁr − rT (ψ − C1Sgn (en))

+ėT
nC2Sgn (en) − θ̃

T
WT

r r (A.16)

9 Using (6) and (8a)-(8c) it can be shown that
∥

∥

∥
(x, ẋ, ..., x(n−1))

∥

∥

∥
≤ ϑ(‖s‖) where ϑ(·) is some positive function. Thus,

m̄(x, ẋ, ..., x(n−1)) ≤ m̄(‖s‖).
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which can be simplified as follows

V̇ =−
n−1
∑

i=1

eT
i ei + eT

n−1en − eT
nΛen + ėT

nC2Sgn (en)

+rT
(

− (K + Im) r − C2Sgn (en) + Ñ
)

(A.17)

and utilizing (10) results in the following expression

V̇ =−
n−1
∑

i=1

eT
i ei − eT

nΛen + eT
n−1en − rT r

+rT Ñ − rTKr − eT
nΛC2Sgn (en) . (A.18)

By using (19), (29), and the triangle inequality, an upper-bound on (A.18) can be obtained as follows

V̇ ≤−λ3 ‖z‖2
+ ‖r‖ ρ (‖z‖) ‖z‖

−K ‖r‖2 −
m
∑

i=1

ΛiC2i |eni (t)|

≤ −
(

λ3 −
ρ2 (‖z‖)

4K

)

‖z‖2 −
m
∑

i=1

ΛiC2i |eni (t)| (A.19)

where λ3 , min
{

1
2 , λmin (Λ) − 1

2

}

and K ∈ R is the minimum eigenvalue of K. The following inequality can be

developed 10

V̇ ≤W (s) −
m
∑

i=1

ΛiC2i |eni (t)| (A.20)

where W (s) ∈ R denotes the non-positive function

W (s) , −β0 ‖z‖
2

(A.21)

in which β0 ∈ R is a positive constant, and provided that K is selected according to the following sufficient condition

K ≥ ρ2 (‖z‖)
4λ3

or ‖z‖ ≤ ρ−1
(

2
√

λ3K
)

. (A.22)

Based on (A.9)-(A.13) and (A.19)-(A.21) the regions D and S can be defined as follows

D =
{

s : ‖s‖ < ρ−1
(

2
√

λ3K
)}

(A.23)

S =

{

s ∈ D : W2 (s) < λ1

(

ρ−1
(

2
√

λ3K
))2

}

. (A.24)

Note that the region of attraction in (A.24) can be made arbitrarily large to include any initial conditions by
increasing K (i.e., a semi-global stability result). Specifically, (A.12) and (A.24) can be used to calculate the region

10 The expression in (A.20) can be rewritten as follows

V̇ ≤ −Λ C2 ‖en (t)‖1

where Λ and C2 ∈ R are the minimum eigenvalues of Λ and C2, respectively. Based on the subsequent analysis, it is clear that
en (t) ∈ L1.
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of attraction as follows

W2 (s (t0)) < λ1

(

ρ−1
(

2
√

λ3K
))2

(A.25)

=⇒‖s (t0)‖ <
√

λ1

λ2 (‖s (t0)‖)
ρ−1

(

2
√

λ3K
)

which can be rearranged as

K ≥ 1

4λ3
ρ2





√

λ2 (‖s (t0)‖)
λ1

‖s (t0)‖



 . (A.26)

By utilizing (20) and (A.10) the following explicit expression for ‖s (t0)‖ can be derived as follows

‖s (t0)‖2
=

n
∑

i=1

‖ei (t0)‖2
+ ‖r (t0)‖2

+ ζb1 + ζb2 + ‖θ‖2
.

From (A.9), (A.20), (A.24)-(A.26), it is clear that V (s, t) ∈ L∞ ∀s (t0) ∈ S 11 ; hence s (t), z (t), θ̃ (t) ∈ L∞

∀s (t0) ∈ S. From (A.20) it is easy to prove that en (t) ∈ L1 ∀s (t0) ∈ S. From (10), it is clear that ėn (t) ∈ L∞

∀s (t0) ∈ S. By using (6), (7) and (9), it can be proven that x(i) (t) ∈ L∞, i = 0, 1, ..., n, ∀s (t0) ∈ S. Then, it is

clear that M (t) , Ṁ (t) , f (t) ∈ L∞ ∀s (t0) ∈ S. The facts that r (t) , θ̃ (t) ∈ L∞ ∀s (t0) ∈ S can be used along with

(28) and (26) to prove that θ̂ (t) ,
·

θ̂ (t) ∈ L∞ ∀s (t0) ∈ S. After using these boundedness statements along with (2)
and (25), it is clear that u (t) , u̇ (t) ∈ L∞ ∀s (t0) ∈ S. The previous boundedness statements and Remarks 1, 2, 3
can be used along with (14), to prove that ṙ (t) ∈ L∞ ∀s (t0) ∈ S. These boundedness statements can be used along

with the time derivative of (A.21) to prove that Ẇ (s (t)) ∈ L∞ ∀s (t0) ∈ S; hence W (s (t)) is uniformly continuous.
Standard signal chasing algorithms can be used to prove that all remaining signals are bounded. A direct application
of Theorem 8.4 in [8] can be used to prove that ‖z (t)‖ → 0 as t→ ∞ ∀s (t0) ∈ S. Based on the definition of z (t), it
is easy to show that ‖ei (t)‖ , ‖r (t)‖ → 0 as t→ ∞ ∀s (t0) ∈ S, i = 1, 2, ..., n. From (10), it is clear that ‖ėn (t)‖ → 0

as t → ∞ ∀s (t0) ∈ S. By utilizing (9) recursively it can be proven that
∥

∥

∥
e
(i)
1 (t)

∥

∥

∥
→ 0 as t → ∞, i = 1, 2, ..., n

∀s (t0) ∈ S.

B Proof of Theorem 2

PROOF. The fact that Wr (t) is a function of only xr (t) and its time derivatives, can be used along with the

boundedness requirement in (7), to show that Wr (t) , Ẇr (t) ∈ L∞. After considering the fact that en (t) ∈ L1 (see

the proof of Theorem 1), it is clear that WT
r (t) Λen (t) , ẆT

r (t) en (t) ∈ L1. After utilizing this fact along with the

first and second terms in (24), we can conclude that
∫ t

t0
WT

r (τ ) Λen (τ ) dτ → c1 and
∫ t

t0
ẆT

r (τ ) en (τ) dτ → c2 as

t → ∞ where c1, c2 are constant vectors (see Theorem 3.1 of [10]). Based on the fact that en (t) → 0m×1 as t → ∞
∀s (t0) ∈ S (see the proof of Theorem 1) then it is clear that WT

r (t) en (t) → 0m×1 as t → ∞. Utilizing the above

facts along with the fact that WT
r (t0) en (t0) is constant, it follows that θ̂ (t) → θ̂∞ as t→ ∞.

C Proof of Theorem 3

PROOF. Let V (s, t) ∈ R denote the following non-negative function

V ,
1

2

n
∑

i=1

eT
i ei +

1

2
rTMr + P1 + Vg (C.1)

11 Similar steps in [8] and [21] can be utilized to prove that s (t) ∈ S ∀t when s (t0) ∈ S and (29), (30), and (A.26) are satisfied.
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where P1 (t) was defined in (A.7), Vg (t) ∈ R is a non-negative function defined as

Vg ,
1

2kL

∫ t

t−T

ÑT
r (τ ) Ñr (τ ) dτ , (C.2)

and s (t) is defined as

s ,
[

zT
√
P1

√

Vg

]T

. (C.3)

After utilizing (5), (C.1) can be bounded as follows

W1 (s) ≤ V (s, t) ≤W2 (s) (C.4)

where W1 (s), W2 (s) ∈ R are defined by

W1 (s) , λ1 ‖s‖2
, W2 (s) , λ2 (‖s‖) ‖s‖2 (C.5)

and λ1, λ2 (·) ∈ R are defined according to

λ1 ,
1

2
min {1,m} , λ2 , max

{

1,
1

2
m̄ (‖s‖)

}

. (C.6)

After taking the time derivative of (C.1), the following expression can be obtained

V̇ =−
n−1
∑

i=1

eT
i ei − eT

nΛen + eT
n−1en (C.7)

−rT r + rT Ñ − rTKr − kL

2
rT r

where (8a)-(8c), (10), (42), (44) and (A.1) were utilized. After utilizing (19), (29) and the triangle inequality, an
upper-bound on (C.7) can be obtained as

V̇ ≤−λ3 ‖z‖2
+ ‖r‖ ρ (‖z‖) ‖z‖ −

(

K +
kL

2

)

‖r‖2

≤−
(

λ4 −
ρ2 (‖z‖)

4K

)

‖z‖2 (C.8)

where λ3 , min
{

1
2 , λmin (Λ) − 1

2

}

and λ4 , min
{

λ3,
kL

2

}

. The following inequality can be developed

V̇ ≤W (s) ≤ W̄ (s) (C.9)

where W (s) , W̄ (s) ∈ R denote the following non-positive functions

W (s) , −β0 ‖z‖2
, W̄ (s) , −β0 ‖e1‖2 (C.10)

with β0 ∈ R being a positive constant, and provided that K is selected according to the following sufficient condition

K ≥ ρ2 (‖z‖)
4λ4

or ‖z‖ ≤ ρ−1
(

2
√

λ4K
)

. (C.11)

Based on (C.1)-(C.6) and (C.8)-(C.10), the regions D and S can be defined as follows

D =
{

s : ‖s‖ < ρ−1
(

2
√

λ4K
)}

(C.12)

S =

{

s ∈ D : W2(s) < λ1

(

ρ−1
(

2
√

λ4K
))2

}

. (C.13)
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Note that the region of attraction in (C.13) can be made arbitrarily large to include any initial conditions by
increasing K (i.e., a semi-global stability result). Specifically, (C.5) and (C.13) can be used to calculate the region
of attraction as follows

W2 (s (t0)) < λ1

(

ρ−1
(

2
√

λ4K
))2

(C.14)

=⇒‖s (t0)‖ <
√

λ1

λ2 (‖s (t0)‖)
ρ−1

(

2
√

λ4K
)

which can be rearranged as

K ≥ 1

4λ4
ρ2





√

λ2 (‖s (t0)‖)
λ1

‖s (t0)‖



 . (C.15)

By utilizing (20) and (C.3) the following explicit expression for ‖s (t0)‖ can be derived as follows

‖s (t0)‖2
=

n
∑

i=1

‖ei (t0)‖2
+ ‖r (t0)‖2

+ ζb1.

From (C.1), (C.9), (C.13)-(C.15), it is clear that V (s, t) ∈ L∞ ∀s (t0) ∈ S; hence s (t) , z (t) ∈ L∞ ∀s (t0) ∈ S. From
(10), it is clear that ėn (t) ∈ L∞ ∀s (t0) ∈ S. Using (6) and (34), it can be proved that x(i) (t) ∈ L∞, i = 0, 1, ..., n,

∀s (t0) ∈ S. Then, it is clear that M (t) , Ṁ (t) , f (t) ∈ L∞ ∀s (t0) ∈ S. By using these boundedness statements
along with (2) it is clear that u (t) ∈ L∞ ∀s (t0) ∈ S. These boundedness statements can be used along with the

time derivative of (C.10) to prove that
.

W̄ (s (t)) ∈ L∞ ∀s (t0) ∈ S; hence W̄ (s (t)) is uniformly continuous. A
direct application of Theorem 8.4 in [8] can be used to prove that ‖e1 (t)‖ → 0 as t → ∞ ∀s (t0) ∈ S. It should be

noted that for finite time the subsequent analysis can be easily extended to prove that N̂r (t), u̇ (t), ṙ (t), Ñr (t) are
bounded.

D Development of (11) for a second order system

In this appendix, the open-loop error system in (11) is developed in detail for a second order system. Following
system model which is a second order form of the class of nonlinear systems is considered

ẍ = f +G (u+ d1) + d2

where x (t), ẋ (t) ∈ R
m are the system states, f (x, ẋ, θ) ∈ R

m and G (x, ẋ, θ) ∈ R
m×m are nonlinear functions,

θ ∈ R
p is an unknown constant parameter vector, d1 (t), d2 (t) ∈ R

m are unknown additive nonlinear disturbances,
and u (t) ∈ R

m is the control input. The system model is assumed to satisfy the following assumptions.

Assumption 5 The nonlinear function G (·) is symmetric, positive definite and satisfies the following inequalities

m ‖ξ‖2 ≤ ξTM (·) ξ ≤ m̄ (·) ‖ξ‖2 ∀ξ ∈ R
m

where M (x, ẋ, θ) ∈ R
m×m is defined as

M , G−1 (D.1)

and m ∈ R is a positive bounding constant, m̄ (x, ẋ) ∈ R is a positive, globally invertible, nondecreasing function of
each variable, and ‖·‖ denotes the Euclidean norm.

Assumption 6 The nonlinear functions, f (·) and G (·), are continuously differentiable up to their second derivatives
(i.e., f (·), G (·) ∈ C2).

Assumption 7 The nonlinear functions, f (·) and M (·), are affine in θ.

Assumption 8 The additive disturbances, d1 (t) and d2 (t), are assumed to be continuously differentiable and

bounded up to their second derivatives (i.e., di (t) ∈ C2 and di (t), ḋi (t), d̈i (t) ∈ L∞, i = 1, 2).
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The output tracking error e1 (t) ∈ R
m is defined as follows

e1 , xr − x (D.2)

where xr (t) ∈ R
m is the reference trajectory satisfying the following property

xr (t) ∈ C2 , x(i)
r (t) ∈ L∞ , i = 0, 1, ..., 4. (D.3)

The control design objective is to develop an adaptive control law that ensures ‖e1 (t)‖ , ‖ė1 (t)‖ → 0 as t→ ∞ and
that all signals remain bounded within the closed-loop system. To achieve the control objectives, the subsequent
development is derived based on the assumption that the system states x (t) and ẋ (t) are measurable.

The filtered tracking error signal, denoted by e2 (t) ∈ R
m, is defined as follows

e2 , ė1 + e1. (D.4)

After utilizing (D.1), the system model can be rewritten as follows

Mẍ = h+ u+ d1 +Md2 (D.5)

where h (t) ∈ R
m is defined as follows

h , Mf. (D.6)

To facilitate the control development, the filtered tracking error signal, denoted by r (t) ∈ R
m, is defined as follows

r , ė2 + Λe2 (D.7)

where Λ ∈ R
m×m is a constant, diagonal, positive definite, gain matrix. After differentiating (D.7) following expres-

sion is obtained

ṙ, ë2 + Λė2 (D.8)

=
...
e 1 + ë1 + Λė2 (D.9)

=
...
x r −

...
x + ë1 + Λė2 (D.10)

where second time derivative of (D.4), and third time derivative of (D.2) were utilized to obtain the second and third
equations, respectively. The time derivative of the expression in (D.5) is as follows

M
...
x + Ṁẍ = ḣ+ u̇+ ḋ1 + Ṁd2 +Mḋ2 (D.11)

and the following expression is obtained

M
...
x = −Ṁẍ+ ḣ+ u̇+ ḋ1 + Ṁd2 +Mḋ2. (D.12)

After premultiplying (D.10) by M (·) following expression is obtained

Mṙ = M
...
x r −M

...
x +Më1 +MΛė2 (D.13)

and then substituting (D.12) results in the following expression

Mṙ=M
...
x r +Më1 +MΛė2 + Ṁẍ− ḣ− u̇− ḋ1 −Mḋ2 − Ṁd2 (D.14)

=M (
...
x r + ë1 + Λė2) + Ṁẍ− ḣ− u̇− ḋ1 −Mḋ2 − Ṁd2. (D.15)

It is noted that (D.15) is the second order form of the general expression in (11).
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E Detailed explanation of the system model in the simulation study

In this appendix, the system model utilized in the simulation study is presented in detail. The system model that
was considered in the simulation study is a first order form of the class of nonlinear systems considered in this work
and has the following form

ẋ = f +G (u+ d1) + d2 (E.1)

where x (t) =
[

x1 (t) x2 (t)
]T

∈ R
2 is the system state, u (t) ∈ R

2 is the control input, f (x, θ) ∈ R
2 and G (x, θ) ∈

R
2×2 are nonlinear functions, θ =

[

θ1 θ2

]T

∈ R
2 is a constant parameter vector, d1 (t), d2 (t) ∈ R

2 are additive

nonlinear disturbances, and f (x, θ) and G (x, θ) are defined as follows

f =

[

x1x2

x2
2

]

(E.2)

G=







2 + cosx1

θ1
0

0
3 + sinx2

θ2






. (E.3)

The matrix inverse of G (x, θ), denoted by M (x, θ) ∈ R
2×2, is defined as

M =







θ1
2 + cosx1

0

0
θ2

3 + sinx2






. (E.4)

The output tracking error, denoted by e1 (t) ∈ R
2, is defined as follows

e1 , xr − x (E.5)

where xr (t) ∈ R
2 is the reference trajectory selected as

xr =

[

xr1

xr2

]

=









sin t

(

1 − exp

(

− t
3

5

))

2 sin t

(

1 − exp

(

− t
3

2

))









. (E.6)

After utilizing M (·) = G−1 (·) the system model can be rewritten as follows

Mẋ = h+ u+ d1 +Md2 (E.7)

where h (t) ∈ R
2 is defined as follows

h , Mf. (E.8)

The time derivative of the expression in (E.7) is given as follows

Mẍ+ Ṁẋ = ḣ+ u̇+ ḋ1 + Ṁd2 +Mḋ2. (E.9)

Since a first order system model was preferred for the numerical simulation study, the only filtered tracking error
signal, denoted by r (t) ∈ R

2, is defined as follows

r , ė1 + Λe1 (E.10)

where Λ ∈ R
2×2 is a constant, diagonal, positive definite, gain matrix. After differentiating (E.10) following expression

is obtained

ṙ, ë1 + Λė1 (E.11)

= ẍr − ẍ+ Λė1 (E.12)
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where the second time derivative of (E.5) was utilized. After premultiplying (E.12) with M (·), following expression
is obtained

Mṙ = Mẍr −Mẍ+MΛė1 (E.13)

and then substituting (E.9) results in the following expression

Mṙ = Mẍr + Ṁẋ− ḣ− u̇− ḋ1 −Mḋ2 − Ṁd2 +MΛė1. (E.14)

After adding and subtracting 0.5Ṁ (·) r (t) + e1 (t) to the right-hand-side of (E.14) following expression is obtained

Mṙ = Mẍr + Ṁẋ− ḣ− u̇− ḋ1 −Mḋ2 − Ṁd2 +MΛė1 + 0.5Ṁr − 0.5Ṁr + e1 − e1. (E.15)

The auxiliary signal, denoted by N (·) ∈ R
2, is defined as follows

N = M (ẍr + Λė1) + Ṁ (ẋ+ 0.5r) + e1 − ḣ (E.16)

and the auxiliary signal, denoted by Nr (t) ∈ R
2, is defined as follows

Nr = Mrẍr + Ṁrẋr − ḣr (E.17)

where hr (t) ∈ R
2 is defined as follows

hr , Mrfr. (E.18)

The nonlinear functions Mr (t) and fr (t) are functions of reference trajectory and are defined as follows

Mr =







θ1
2 + cosxr1

0

0
θ2

3 + sinxr2






(E.19)

fr =

[

xr1xr2

x2
r2

]

. (E.20)

The auxiliary signal Nr (t) can be found as follows

Nr =







θ1
1

2 + cosxr1
0

0 θ2
1

3 + sinxr2







[

ẍr1

ẍr2

]

+









−θ1
ẋr1 sinxr1

(2 + cosxr1)
2 0

0 θ2
ẋr2 cosxr2

(3 + sinxr2)
2









[

ẋr1

ẋr2

]

−









−θ1
ẋr1 sinxr1

(2 + cosxr1)
2 0

0 θ2
ẋr2 cosxr2

(3 + sinxr2)
2









[

xr1xr2

x2
r2

]

−







θ1
1

2 + cosxr1
0

0 θ2
1

3 + sinxr2







[

ẋr1xr2 + xr1ẋr2

2xr2ẋr2

]

=













θ1

(

ẍr1 − ẋr1xr2 − xr1ẋr2

2 + cosxr1
− ẋr1 (ẋr1 − xr1xr2) sinxr1

(2 + cosxr1)
2

)

θ2

(

ẍr2 − 2xr2ẋr2

3 + sinxr2
+
ẋr2

(

ẋr2 − x2
r2

)

cosxr2

(3 + sinxr2)
2

)













(E.21)
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From which it can be concluded that
Nr = Wrθ

where θ =
[

θ1 θ2

]T

∈ R
2 is the unknown constant parameter vector and Wr (xr, ẋr, ẍr) ∈ R

2×2 is the nonlinear

regressor matrix defined as follows

Wr =









ẍr1 − ẋr1xr2 − xr1ẋr2

2 + cosxr1
− ẋr1 (ẋr1 − xr1xr2) sinxr1

(2 + cosxr1)
2 0

0
ẍr2 − 2xr2ẋr2

3 + sinxr2
+
ẋr2

(

ẋr2 − x2
r2

)

cosxr2

(3 + sinxr2)
2









.

F Development of (19)

In this appendix, the upper bound for the auxiliary term Ñ (.) in ((19)) will be derived. To facilitate the upper
bound development, first, the second and the third terms in the first line of (13) will be written in terms of ei (t),
i = 1, ..., n. After utilizing (8a) and (8b), following expressions can be obtained for the first and the second time
derivatives of e1 (t)

ė1 = e2 − e1 (F.1)

ë1 = e3 − 2e2 (F.2)

and the following general formula can be utilized to calculate the higher order derivatives of e1 (t) in terms of ei (t),
i = 1, ..., n

e
(k)
1 = āk,0ek+1 + āk,1ek + āk,2ek−1

+

k−2
∑

i=1

(−āk−1,i − āk−1,i+1 + āk−1,i+2) ek−1−i (F.3)

for k = 3, ..., (n− 1), and the nth order derivative of e1 (t) can be obtained as follows in terms of ei (t), i = 1, ..., n
and r (t)

e
(n)
1 = r − [(ān,0 + ān,1) I − Λ] en + (ān,0 + ān,2) en−1

+

n−2
∑

i=1

(−ān−1,i − ān−1,i+1 + ān−1,i+2) en−1−i (F.4)

where āk,0 = 1, āk,1 = −k, āk,2 = (k − 1) (k − 2) /2 for k = 2, ..., n and āk,j = 0 when j > k. After utilizing (F.3)
and (F.4) along with (13), following expression can be obtained

n−2
∑

j=0

anje
(j+2)
1 + Λėn =

n−1
∑

j=1

bjej + Λ1en + Λ2r (F.5)

where bj , j = 1, ..., (n− 1) are constants, and Λ1, Λ2 ∈ R
m×m are constant, diagonal matrices that can be obtained

by substituting (F.1)-(F.4) into the left-hand-side of (F.5). Thus, the auxiliary function N
(

x, ẋ, ..., x(n), t
)

, which
was defined in (13), can be rewritten as follows

N = M



x(n+1)
r +

n−1
∑

j=1

bjej + Λ1en + Λ2r



+ Ṁ

(

x(n) +
1

2
r

)

+ en − ḣ. (F.6)

The auxiliary function Nr (t) can be written as follows

Nr = Mrx
(n+1)
r + Ṁrx

(n)
r − ḣr (F.7)
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where Mr (t) was defined in (18) and ḣr (t) ∈ R
m is defined as follows

ḣr , ḣ
∣

∣

∣

x=xr, ẋ=ẋr,..., x(n)=x
(n)
r

.

To simplify the subsequent derivations, following definitions are made

F ,N −Mḋ2 − Ṁd2

Fr ,Nr −Mrḋ2 − Ṁrd2

where F , F
(

x, ..., x(n), e1, ..., en, r, x
(n+1)
r

)

∈ R
m and Fr , F |

x=xr, ẋ=ẋr,..., x(n)=x
(n)
r

= F
(

xr, ..., x
(n)
r , 0, ..., 0, 0, x

(n+1)
r

)

∈
R

m. Thus, from (15) following expression is obtained

Ñ , F − Fr. (F.8)

To further facilitate the subsequent upper bound development, F
(

xr, ẋ, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)

, ...,

F
(

xr, ẋr, ..., x
(n)
r , e1, ..., en, r, x

(n+1)
r

)

, F
(

xr, ..., x
(n)
r , 0, ..., en, r, x

(n+1)
r

)

, ..., F
(

xr, ..., x
(n)
r , 0, ..., 0, r, x

(n+1)
r

)

are added

and subtracted to the right-hand side of (F.8) to obtain the following expression

Ñ =
[

F
(

x, ..., x(n), e1, ..., en, r, x
(n+1)
r

)

− F
(

xr , ..., x
(n), e1, ..., en, r, x

(n+1)
r

)]

+
[

F
(

xr , ẋ, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)

− F
(

xr, ẋr, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)]

...

+
[

F
(

xr , ..., x
(n−1)
r , x(n), e1, ..., en, r, x

(n+1)
r

)

− F
(

xr, ..., x
(n−1)
r , x(n)

r , e1, ..., en, r, x
(n+1)
r

)]

+
[

F
(

xr , ..., x
(n−1)
r , x(n)

r , e1, ..., en, r, x
(n+1)
r

)

− F
(

xr, ..., x
(n)
r , 0, ..., en, r, x

(n+1)
r

)]

+
[

F
(

xr , ..., x
(n)
r , 0, e2, ..., en, r, x

(n+1)
r

)

− F
(

xr, ..., x
(n)
r , 0, 0, ..., en, r, x

(n+1)
r

)]

...

+
[

F
(

xr , ..., x
(n)
r , 0, 0, ..., 0, r, x(n+1)

r

)

− F
(

xr, ..., x
(n)
r , 0, 0, ..., 0, 0, x(n+1)

r

)]

. (F.9)

It is to be noted that the first term on the first line of (F.9) and the second term on the last line of (F.9) are equal
to F (·) and Fr (·), respectively, and the other terms are subtracted in the preceding line and added in the following
line. After applying the Mean Value Theorem [8] to each bracketed term of (F.9), the following expression can be
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obtained

Ñ =
∂F
(

σ0, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)

∂σ0

∣

∣

∣

∣

∣

∣

σ0=v0

(x− xr)

+
∂F
(

xr, σ1, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)

∂σ1

∣

∣

∣

∣

∣

∣

σ1=v1

(ẋ− ẋr)

...

+
∂F
(

xr, ..., σn, e1, e2, ..., en, r, x
(n+1)
r

)

∂σn

∣

∣

∣

∣

∣

∣

σn=vn

(

x(n) − x(n)
r

)

+
∂F
(

xr, ..., x
(n)
r , σn+1, e2, ..., en, r, x

(n+1)
r

)

∂σn+1

∣

∣

∣

∣

∣

∣

σn+1=vn+1

(e1 − 0)

+
∂F
(

xr, ..., x
(n)
r , e1, σn+2, ..., en, r, x

(n+1)
r

)

∂σn+2

∣

∣

∣

∣

∣

∣

σn+2=vn+2

(e2 − 0)

...

+
∂F
(

xr, ..., x
(n)
r , e1, e2, ..., σ2n, r, x

(n+1)
r

)

∂σ2n

∣

∣

∣

∣

∣

∣

σ2n=v2n

(en − 0)

+
∂F
(

xr, ..., x
(n)
r , e1, e2, ..., en, σ2n+1, x

(n+1)
r

)

∂σ2n+1

∣

∣

∣

∣

∣

∣

σ2n+1=v2n+1

(r − 0) (F.10)
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where vi ∈ (xr, x) for i = 0, ..., n, vi ∈ (0, ei) for i = (n+ 1) , ..., 2n, and v2n+1 ∈ (0, r). The right-hand side of (F.10)
can be upper bounded as follows

∥

∥

∥Ñ
∥

∥

∥ ≤

∥

∥

∥

∥

∥

∥

∂F
(

σ0, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)

∂σ0

∣

∣

∣

∣

∣

∣

σ0=v0

∥

∥

∥

∥

∥

∥

‖e1‖

+

∥

∥

∥

∥

∥

∥

∂F
(

xr, σ1, ..., x
(n), e1, ..., en, r, x

(n+1)
r

)

∂σ1

∣

∣

∣

∣

∣

∣

σ1=v1

∥

∥

∥

∥

∥

∥

‖ė1‖

...

+

∥

∥

∥

∥

∥

∥

∂F
(

xr, ..., σn, e1, e2, ..., en, r, x
(n+1)
r

)

∂σn

∣

∣

∣

∣

∣

∣

σn=vn

∥

∥

∥

∥

∥

∥

∥

∥

∥e
(n)
1

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∥

∂F
(

xr, ..., x
(n)
r , σn+1, e2, ..., en, r, x

(n+1)
r

)

∂σn+1

∣

∣

∣

∣

∣

∣

σn+1=vn+1

∥

∥

∥

∥

∥

∥

∥

‖e1‖

+

∥

∥

∥

∥

∥

∥

∥

∂F
(

xr, ..., x
(n)
r , e1, σn+2, ..., en, r, x

(n+1)
r

)

∂σn+2

∣

∣

∣

∣

∣

∣

σn+2=vn+2

∥

∥

∥

∥

∥

∥

∥

‖e2‖

...

+

∥

∥

∥

∥

∥

∥

∂F
(

xr, ..., x
(n)
r , e1, e2, ..., σ2n, r, x

(n+1)
r

)

∂σ2n

∣

∣

∣

∣

∣

∣

σ2n=v2n

∥

∥

∥

∥

∥

∥

‖en‖

+

∥

∥

∥

∥

∥

∥

∥

∂F
(

xr, ..., x
(n)
r , e1, e2, ..., en, σ2n+1, x

(n+1)
r

)

∂σ2n+1

∣

∣

∣

∣

∣

∣

σ2n+1=v2n+1

∥

∥

∥

∥

∥

∥

∥

‖r‖ . (F.11)

The partial derivatives in (F.11) can be calculated by using (F.6) as follows

∂F (σi)

∂σi

=
∂M

∂σi



x(n+1)
r +

n−1
∑

j=1

bjej + Λ1en + Λ2r



+
∂Ṁ

∂σi

(

x(n) +
1

2
r

)

− ∂ḣ

∂σi

for i = 0, ..., n (F.12)

∂F (σi)

∂σi

= biM for i = (n+ 1) , ..., (2n− 1) (F.13)

∂F (σ2n)

∂σ2n

= MΛ1 + I (F.14)

∂F (σ2n+1)

∂σ2n+1
= MΛ2 + 0.5Ṁ. (F.15)

By defining vi , x(i) − τ i

(

x(i) − x
(i)
r

)

for i = 0, ..., n, vi , ei − τ i (ei − 0) for i = (n+ 1) , ..., 2n, and v2n+1 ,

r− τ i (r − 0), where τ i ∈ (0, 1) ∀i = 0, ..., (2n+ 1), and if Assumptions 2 and 4, and (7) are met, then upper bounds
for the right-hand sides of the expressions in (F.12)-(F.15) can be rewritten as follows

∥

∥

∥

∥

∥

∂F (σi)

∂σi

∣

∣

∣

∣

σi=vi

∥

∥

∥

∥

∥

6 ρi

(

x, ..., x(n)
)

(F.16)
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where ρi (·) ∀i = 0, ..., (2n+ 1), are positive nondecreasing functions of x (t) , ..., x(n) (t). After substituting (F.16)

into (F.11), the upper bound for the auxiliary signal Ñ (·) can be rewritten as

Ñ ≤
n
∑

j=0

ρj (‖e1‖ , ..., ‖en‖ , ‖r‖)
∥

∥

∥e
(j)
1

∥

∥

∥ (F.17)

+
2n
∑

j=n+1

ρj (‖e1‖ , ..., ‖en‖ , ‖r‖) ‖ej−n‖

+ρ2n+1 (‖e1‖ , ..., ‖en‖ , ‖r‖) ‖r‖

where (F.1)-(F.4) and derivatives of (6) were utilized. The expressions in (20), (F.1)-(F.4) can be used to rewrite
the upper bound for the right-hand side of (F.17) as in (19).
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